Math 380 – Introduction to Mathematical Modeling

Course Description from Bulletin: This course provides an introduction to problemdriven (as opposed to method-driven) applications of mathematics with a focus on design and analysis of models using tools from all parts of mathematics. (3-0-3) (C)

Enrollment: Required for AM and Elective for other majors.

Textbook(s): Giordano, Fox, Horton, A First Course in Mathematical Modeling, 5th edition, Cengage, 2013.

Other required material: Use of computational software such as MATLAB or Mathematica, both widely available on campus.

Prerequisites: CS 104, MATH 251, MATH 252 (concurrent), MATH 332

Objectives:

- 1. Students will develop an understanding of applied mathematics as a thought-process and a toolbox for the study of real-world phenomena from engineering, natural and social sciences.
- 2. Students will learn concepts and tools from different parts of mathematics continuous, discrete, and probabilistic as they are applied to build and refine models for various applications.
- 3. Students will study how to compare the modeling results to observations and how models can be improved.
- 4. Students will do an 8–10 week long project where they apply the modeling process to analyze an open ended real-life problem, with a deliverable of a project report and programming implementation.
- 5. Students will develop good habits for understanding, communicating, and writing mathematical knowledge through classroom participation, homework, and projects.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Cours	se Outline:	Hours	
1.	Discrete change in financial and biological population systems – Differen	ce	
	equations and discrete dynamical systems, solutions and stability	5	
2.	Physical models – Proportionality and geometric similarity	3	
3.	Model fitting – Errors, Chebyshev criterion, least squares criterion, linear		
	regression, and data transformation	5	
4.	Discrete optimization models - Linear optimization, geometric and algebra		
	solutions, integer programs and combinatorial optimization, binary decisi	ons	
		3	
5.	Network models - Graphs and networks, network flows, assignment prob	lems,	
	graph coloring, vertex covers, local search algorithms	5	
6.	6. Discrete probabilistic models – Finite discrete time Markov chains		
	distribution, component and system reliability	2	
7.	Simulation Modeling - Monte Carlo algorithms, random point generation	١,	
	queuing models	3	

8. Population models – Ordinary differential equations, equilibria, phase diagrams and solutions fields
9. Competing species and predator-prey models – Dynamical systems, Euler's method, solving linear dynamical systems
5
10. Continuous optimization models – Multivariable optimization, gradient method, Lagrange multipliers, Newton's method
11. Special topics – e.g., complex network models, game theoretic models
3

Assessment :	Homework	15-25%
	Semester Project	20-30%
	Mid-Term Exams	20-30%
	Final Exam	20-30%

Syllabus prepared by: Hemanshu Kaul and Gregory Fasshauer

Date: 10/01/2014