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What is MPI?

§ MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the application can and cannot 
expect

– Each system can implement it differently as long as the semantics match
§ MPI is not…

– a language or compiler specification
– a specific implementation or product
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Reasons for Using MPI

§ Standardization - MPI is the only message passing library which can be considered a standard. It 
is supported on virtually all HPC platforms. Practically, it has replaced all previous message 
passing libraries

§ Portability - There is no need to modify your source code when you port your application to a 
different platform that supports (and is compliant with) the MPI standard

§ Performance Opportunities - Vendor implementations should be able to exploit native hardware 
features to optimize performance

§ Functionality – Rich set of features 

§ Availability - A variety of implementations are available, both vendor and public domain
– MPICH is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH and add support for their systems
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX
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Exascale MPI (MPICH)

• Funded by DOE for 29 years

• Has been a key influencer in the adoption of MPI

– First/most comprehensive implementation of every MPI standard

– Allows supercomputing centers to not compromise on what features 

they demand from vendors(

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm. layer)

• MPICH and its derivatives are the world’s most widely used MPI 

implementations
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MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (MPICH)

§ Frontier, ORNL, USA (Cray MPI)

§ El Capitan, LLNL, USA (Cray MPI)



Key Focus Areas Work together with the ECP 
ecosystem

4 Exascale Computing Project, www.exascaleproject.org
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CH4 Design Goals

Provide default shared memory 
implementation in CH4

§ Disable when desirable

– Eliminate branch in the critical path

– Enable better tuned shared memory 
implementations

– Collective offload

High-Level Netmod API
§ Give more control to the network

• netmod_isend
• netmod_irecv
• netmod_put
• netmod_get

§ Fallback to Active Message based 
communication when necessary
• Operations not supported by the 

network

“Netmod Direct”
§ Support two modes

• Multiple netmods
• Retains function pointer for flexibility

• Single netmod with inlining into device layer
• No function pointer overhead

MPI

CH4

Netmod

OFI UCX

Minimal Per Process Data
• Global address table

• Contains all process addresses
• Index into global table by translating 

(rank+comm)

Partnership with Intel, Mellanox, Cray, 
RIKEN, NVIDIA and AMD
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Memory Scalable Network Address 
Management
§ AV Table: Compressing VC (480Bytes -> 12Bytes)

– Compressing Multitransport Functionality
• Function pointers are moved to a separate array

– Deprioritizing Dynamic Processes
• Process group information moved to COMM

§ Rank Mapping Models
– Regular: DIRECT, OFFSET, STRIDE, STRIDE_BLOCK

– Irregular: LUT, MLUT

– Mixed: LUT_STRIDE, LUT_STRIDE_BLOCK, etc.

§ Shared AV Tables
– AV Tables in shared memory for processes on the same 

node

– Shared AV Table 0 (MPI_COMM_WORLD): created at init
time, read-only, lock-free

– Per-proc AV Tables (dynamic processes): avoid locking
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Multithreaded MPI Work-Queue Model
§ Context

– Existing lock-based MPI implementations unconditionally acquire locks
– Nonblocking operations may block for a lock acquisition

• Not truly nonblocking!
§ Consequences

– Nonblocking operations may be slowed by blocking ones from other 
threads

– Pipeline stalls: higher latencies, lower throughput, and less communication-
computation overlapping

§ Work-Queue Model
– One or multiple work-queues per endpoint
– Decouple blocking and nonblocking operations
– Nonblocking operations enqueue work descriptors and leave if critical 

section held
– Threads issue work on behalf of other threads when acquiring a critical 

section
– Nonblocking operations are truly nonblocking

§ Multiple network endpoints
– Both user visible and hidden

MPI_Send(...)
{

CS_TRY_ENTER;
if(!success) {

CS_ENTER;
}

flush_workq();
Wait_Progress();

CS_EXIT;
}
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Hardware
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§ Current MPICH code
– Single VCI (Virtual Communication Interface) being 

used
• Serializes all traffic
• Does not fully exploit network hardware contexts

§ Proposed solution: Multi-VCI communication
– Each VCI encapsulates/abstracts network resources
– Isolation between VCIs
– Transparent to the user
– Exploit independence in communication paths
• Separate VCIs per communicator
• Separate VCIs per RMA window
• Distribute traffic between VCIs with respect to 

ranks, tags, and generally out-of-order 
communication

Multi-VCI Communication

Partnership with Intel



Multi-VCI Performance

§ Evaluation of the prototype with multithreaded stencil kernel that model from ECP
applications.
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Supporting GPU in MPI Communication (1/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through 

Libfabrics or UCX (we work with these libraries to enable 
it)

– GPU Direct IPC is integrated into MPICH
• GPU Fallback Path

– GPU Direct RDMA may not be available due to system 
setup (e.g. library, kernel driver, etc.)

– GPU Direct IPC might not be possible for some system 
configurations

– GPU Direct (both forms) might not work for 
noncontiguous data

– Datatype and Active Message Support
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Supporting GPU in MPI Communication (2/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• MPICH support for using complex noncontiguous 
buffers with GPU
– Buffer with complex datatype is not directly supported by the 

network library
– Packing complex datatype from GPU into contiguous send buffer
– Unpacking received data back into complex datatype on GPU

• Yaksa: A high performance datatype engine
– Used for internal datatype representation in MPICH
– Front-end provide interface for MPI datatypes
– Multiple backend to leverage different hardware for datatype

handle
– Generated GPU kernels for packing/unpacking
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Supporting GPU in MPI Communication (3/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Supporting Multiple GPU Node
– Data movement between GPU devices
– Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

• GPU-IPC Communication via Active Message
– Create IPC handles for GPU buffers
– Send IPC handles to target process
– Receiver initiate Read/Write using the IPC handle

• Fallback Path in General SHM Active Message
– When IPC is not available for the GPU-pair
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Other Research and Optimization for MPI

§ Collective Algorithm
– Optimized Algorithms for different message size, process groups, HW acceleration

§ Topology Awareness
– Topology-aware communication

§ Job Launching Scalability

§ Heterogeneous Memory

§ GPU-stream-triggered Operation
– Synchronization Strategy between CPUs and GPUs

– Vendor independent abstraction for GPU interoperability

§ MPI-4 Standard



Our Projects

§ MPICH
– https://www.mpich.org/

§ OSHMPI
– https://pmodels.github.io/oshmpi-www/

§ Argobots
– https://www.argobots.org/
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