
Exascale MPI: Making MPI Ready for
Future Supercomputers

Yanfei Guo

Argonne National Laboratory

yguo@anl.gov

mailto:yguo@anl.gov

What is MPI?

§ MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the application can and cannot
expect

– Each system can implement it differently as long as the semantics match
§ MPI is not…

– a language or compiler specification
– a specific implementation or product

2

Reasons for Using MPI

§ Standardization - MPI is the only message passing library which can be considered a standard. It
is supported on virtually all HPC platforms. Practically, it has replaced all previous message
passing libraries

§ Portability - There is no need to modify your source code when you port your application to a
different platform that supports (and is compliant with) the MPI standard

§ Performance Opportunities - Vendor implementations should be able to exploit native hardware
features to optimize performance

§ Functionality – Rich set of features

§ Availability - A variety of implementations are available, both vendor and public domain
– MPICH is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH and add support for their systems
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

3

Exascale MPI (MPICH)

• Funded by DOE for 29 years

• Has been a key influencer in the adoption of MPI

– First/most comprehensive implementation of every MPI standard

– Allows supercomputing centers to not compromise on what features

they demand from vendors(

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm. layer)

• MPICH and its derivatives are the world’s most widely used MPI

implementations

MPICH

Intel
MPI

Sunway
MPI

Cray
MPI

Microsoft
MPI

MVAPICH

Tianhe
MPI

MPE

PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN
MPI

MPICH Users

MPICH is not just a software
It’s an Ecosystem

MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (MPICH)

§ Frontier, ORNL, USA (Cray MPI)

§ El Capitan, LLNL, USA (Cray MPI)

Key Focus Areas Work together with the ECP
ecosystem

4 Exascale Computing Project, www.exascaleproject.org

ECP has formulated a holistic approach that uses co-
design and integration to achieve capable exascale

Application Development Software
Technology

Hardware
Technology

Exascale
Systems

Scalable and
productive software

stack

Science and mission
applications

Hardware technology
elements

Integrated exascale
supercomputers

Correctness Visualization Data Analysis

Applications Co-Design

Programming models,
development environment,

and runtimes
ToolsMath libraries

and Frameworks

System Software,
resource management
threading, scheduling,
monitoring, and control

Memory
and Burst

buffer

Data
management
I/O and file

system
Node OS, runtimes

R
e
s
ili

e
n
c
e

W
o
rk

fl
o
w

s

Hardware interface

ECP’s work encompasses applications, system software, hardware technologies and
architectures, and workforce development

Work with vendors to ensure high
performance MPI implementations for

DOE supercomputer acquisitions

Influence the evolution of
the MPI Standard to address

ECP and DOE application
needs

MPI

Address Key Technical Challenges

MPI+X Hybrid
Programming

Heterogeneity

Topology
Awareness

Performance &
Scalability

Fault Tolerance

CH4 Design Goals

Provide default shared memory
implementation in CH4

§ Disable when desirable

– Eliminate branch in the critical path

– Enable better tuned shared memory
implementations

– Collective offload

High-Level Netmod API
§ Give more control to the network

• netmod_isend
• netmod_irecv
• netmod_put
• netmod_get

§ Fallback to Active Message based
communication when necessary
• Operations not supported by the

network

“Netmod Direct”
§ Support two modes

• Multiple netmods
• Retains function pointer for flexibility

• Single netmod with inlining into device layer
• No function pointer overhead

MPI

CH4

Netmod

OFI UCX

Minimal Per Process Data
• Global address table

• Contains all process addresses
• Index into global table by translating

(rank+comm)

Partnership with Intel, Mellanox, Cray,
RIKEN, NVIDIA and AMD

1342

215 143 129 44
253 221 147 141 59

0

500

1000

1500

MPICH/CH3MPICH/CH4
(default)

MPICH/CH4
(+no errors)

MPICH/CH4
(+no thread

check)

MPICH/CH4
(+ipo)

In
st
ru
ct
io
n
Co

un
ts

Instruction Counts

MPI_Put MPI_Isend

Lower Overheads = Better Strong Scaling

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Es
tim

at
ed

 E
ffi

ci
en

cy

Grid Points Per MPI Rank Bucket

MPICH/CH4 N=5

MPICH/Original
N=5

MPICH/CH4 N=7

MPICH/Original
N=7

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512 (368) 1024 (184) 2048 (90) 4096 (45) 8192 (23)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
pe

r S
ec

on
d

Number of nodes (atoms per core)

MPICH/CH4 Eff iciency
MPICH/Original Efficiency
MPICH/CH4 Speedup

BGQ LAMMPS Strong Scaling MPICH/CH4 vs
MPICH/OriginalNek5000 Mass−Matrix Inversion Efficiency

Memory Scalable Network Address
Management
§ AV Table: Compressing VC (480Bytes -> 12Bytes)

– Compressing Multitransport Functionality
• Function pointers are moved to a separate array

– Deprioritizing Dynamic Processes
• Process group information moved to COMM

§ Rank Mapping Models
– Regular: DIRECT, OFFSET, STRIDE, STRIDE_BLOCK

– Irregular: LUT, MLUT

– Mixed: LUT_STRIDE, LUT_STRIDE_BLOCK, etc.

§ Shared AV Tables
– AV Tables in shared memory for processes on the same

node

– Shared AV Table 0 (MPI_COMM_WORLD): created at init
time, read-only, lock-free

– Per-proc AV Tables (dynamic processes): avoid locking

MLUT
COMM

DIRECT
COMM

0 1 2 3 4 5AV
tables

R=
0

LUT
COMM

5 4

R=
0

0 1

R=
1

OFFSET
COMM

Offset

R=
0

STRIDE
COMM

Stride

R=
0

0
:
5

1:
1

LUT_STRIDE
COMM

5 4

R=0

Stride

Proc 0

COMM

0 1 2 3 4 5

Proc 1

COMM

0 1 2 3 4 5

R=
0

R=
0

…

2K

200M

400M

600M

800M

1000M

12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

76
8K

VC-VCRT-10COMM VC-VCRT-100COMM

AV-Rankmap-10COMM AV-Rankmap-100COMM

VC-VCRT run out of
memory at 768K procs,
100 COMMs

AV-Rankmap (Per-proc AV
Table) uses 9MB/proc for
at 100 COMMS

Multithreaded MPI Work-Queue Model
§ Context

– Existing lock-based MPI implementations unconditionally acquire locks
– Nonblocking operations may block for a lock acquisition

• Not truly nonblocking!
§ Consequences

– Nonblocking operations may be slowed by blocking ones from other
threads

– Pipeline stalls: higher latencies, lower throughput, and less communication-
computation overlapping

§ Work-Queue Model
– One or multiple work-queues per endpoint
– Decouple blocking and nonblocking operations
– Nonblocking operations enqueue work descriptors and leave if critical

section held
– Threads issue work on behalf of other threads when acquiring a critical

section
– Nonblocking operations are truly nonblocking

§ Multiple network endpoints
– Both user visible and hidden

MPI_Send(...)
{

CS_TRY_ENTER;
if(!success) {

CS_ENTER;
}

flush_workq();
Wait_Progress();

CS_EXIT;
}

enqueue

Dequeue

Hardware

T
x

T
x

Nonblocking
Operation

Blocking
Operation

Work-Queue per
Communication Context

262144

524288

1048576

2097152

1 4 16 64 256 1024 4096

Da
ta

 T
ra

ns
fe

r R
at

e
(C

hu
nk

s/
s)

Data Chunk Size (Bytes)

MS-WorkQ

Original

Hardware

Application

MPI

VCI

User Endpoint

VCIVCI

Exploit Independence in
communication

VCI

Current

RECV1 SEND1 SEND2

VCI

Soon

RECV1 SEND1 SEND2

VCI

§ Current MPICH code
– Single VCI (Virtual Communication Interface) being

used
• Serializes all traffic
• Does not fully exploit network hardware contexts

§ Proposed solution: Multi-VCI communication
– Each VCI encapsulates/abstracts network resources
– Isolation between VCIs
– Transparent to the user
– Exploit independence in communication paths
• Separate VCIs per communicator
• Separate VCIs per RMA window
• Distribute traffic between VCIs with respect to

ranks, tags, and generally out-of-order
communication

Multi-VCI Communication

Partnership with Intel

Multi-VCI Performance

§ Evaluation of the prototype with multithreaded stencil kernel that model from ECP
applications.

-5
0
5

10
15
20
25
30
35
40
45
50
55

4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

M
es

sa
ge

s/
s (

x
10

6)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

48 96
192

384
768

1536
3072

6144
12288

24576
49152

98304

196608

Mesh dimension

1 iteration; 16 cores per node

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs

Message Rate of Multithread Communication with MPI
(16 threads/node)

Communication Time (ms) of Halo Exchange in Stencil Kernel

Supporting GPU in MPI Communication (1/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through

Libfabrics or UCX (we work with these libraries to enable
it)

– GPU Direct IPC is integrated into MPICH
• GPU Fallback Path

– GPU Direct RDMA may not be available due to system
setup (e.g. library, kernel driver, etc.)

– GPU Direct IPC might not be possible for some system
configurations

– GPU Direct (both forms) might not work for
noncontiguous data

– Datatype and Active Message Support

NVIDIA
CUDA

AMD
HIP

Intel
OneAPI

CH4

MPI Layer

CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype
Management

Group
Management

GPU Support
Fallback

GPU IPC

Supporting GPU in MPI Communication (2/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• MPICH support for using complex noncontiguous
buffers with GPU
– Buffer with complex datatype is not directly supported by the

network library
– Packing complex datatype from GPU into contiguous send buffer
– Unpacking received data back into complex datatype on GPU

• Yaksa: A high performance datatype engine
– Used for internal datatype representation in MPICH
– Front-end provide interface for MPI datatypes
– Multiple backend to leverage different hardware for datatype

handle
– Generated GPU kernels for packing/unpacking

Yaksa Datatype Engine

Vector

Indexed

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE*
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Yaksa H2H Yaksa D2D

Supporting GPU in MPI Communication (3/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Supporting Multiple GPU Node
– Data movement between GPU devices
– Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

• GPU-IPC Communication via Active Message
– Create IPC handles for GPU buffers
– Send IPC handles to target process
– Receiver initiate Read/Write using the IPC handle

• Fallback Path in General SHM Active Message
– When IPC is not available for the GPU-pair

AM SEND

GPU

Memory

Src Buffer

MPICH SHM Communication Layer

IPC Handle

GPU

Memory

Dest Buffer

Incoming Msg

IPC Handle

Other Research and Optimization for MPI

§ Collective Algorithm
– Optimized Algorithms for different message size, process groups, HW acceleration

§ Topology Awareness
– Topology-aware communication

§ Job Launching Scalability

§ Heterogeneous Memory

§ GPU-stream-triggered Operation
– Synchronization Strategy between CPUs and GPUs

– Vendor independent abstraction for GPU interoperability

§ MPI-4 Standard

Our Projects

§ MPICH
– https://www.mpich.org/

§ OSHMPI
– https://pmodels.github.io/oshmpi-www/

§ Argobots
– https://www.argobots.org/

Thank you!

Yanfei Guo

Argonne National Laboratory

yguo@anl.gov

mailto:yguo@anl.gov

