
DeepHyper: Automated Machine
Learning at Scale

e r h t jh tyh y

Prasanna Balaprakash
Computer Scientist

Mathematics & Computer Science Division
Leadership Computing Facility
Argonne National Laboratory

pbalapra@anl.gov
https://www.mcs.anl.gov/~pbalapra/

MARCH 9, 2022

mailto:pbalapra@anl.gov
https://www.mcs.anl.gov/~pbalapra/

2

AI/ML for DOE applications

Subatomic
Particles Weather

Molecular
Dynamics Transportation Cosmology

More than 100+ AI/ML applications at ANL in 2018 (large tail)

Diverse data types

3

Degrees of Freedom in Neural Networks Design

Fig. 1: Example stacked MPNN search space with three
MPNN variable nodes in blue: N1, N2, and N3. The skip-
connection variable nodes are N5, N6, and N7. Dotted lines
represent possible skip connections. The gather variable node
is N4. The inputs to the networks are node features I1, edge
features I2, edge pairs I3, and node masks I4. After two
constant dense nodes with 32 hidden units, the output node is
O. The variables in the MPNN node include the number of
channels, the attention mechanisms, the number of attention
heads, the aggregation methods, the activation functions, the
update functions, and the number of repetitions.

each containing a list of possible operations. Intermediate
nodes are made up of two categories: constant node (single
operation) and variable node (multiple operations). For a given
variable node, an index is assigned for each operation. An
architecture from the space can be defined by using a vector
p 2 Zn, where n is the number of variable nodes. Each entry
pi is an index chosen from a set of possible index values
for the variable node i. The stacked MPNN search space
is composed of MPNN, skip-connection, and gather variable
nodes, described below.

1) Input node: As shown in Fig. 1, the inputs for any
given network include node features, edge features, edge pairs,
and node masks. For a given molecule dataset, N and E are
the maximum number of nodes (atoms) and edges (bonds),
respectively. We use zero padding to create the node feature
matrix to H 2 RN⇥Fn and the edge feature matrix to
E 2 RE⇥Fe , where Fn and Fe are the numbers of node
features and edge features, respectively. We also have an edge
pair matrix P 2 ZE⇥2, where each row contains the indices
of two nodes connected by a given edge. Because molecules

have a varied number of atoms (nodes), the node mask vector
m 2 ZN is used to screen out the non-existent node features
that are added by zero padding. An existent node has mi = 1,
and a nonexistent node has mi = 0.

2) MPNN node: Each MPNN node runs internally for T
time steps to update the hidden feature of each node. An
MPNN node contains a message function Mt and an update
function Ut, defined as follows:

m
t+1
v = Aggw2N (v)Mt

�
h
t
v,h

t
w, evw

�
(1)

h
t+1
v = Ut

�
h
t
v,m

t+1
v

�
. (2)

To update the hidden feature of a node v, the message
function Mt at step t takes as inputs the node v feature h

t
v ,

the neighboring node feature h
t
w for w 2 N (v), and the

edge feature evw between node v and w. The output of the
message function Mt contains a list of message vectors from
neighboring nodes. The aggregate function Agg collects the
message vectors and generates the intermediate hidden feature
m

t+1
v . The aggregate function Agg is one of mean, summation,

or max pooling. The update function Ut at step t combines the
node feature h

t
v and the intermediate hidden feature m

t+1
v to

create the new hidden feature of step t+1 h
t+1
v . The detailed

structures of the message function Mt and update function Ut

are as follows.

Mt

�
h
t
v,h

t
w, evw

�
= ↵vwMLP (evw)h

t
w (3)

Ut

�
h
t
v,m

t+1
v

�
=

(
GRU

�
h
t
v,m

t+1
v

�

MLP
�
h
t
v,m

t+1
v

� . (4)

Typically, the message function has a multilayer perceptron
(MLP or edge network) to handle the edge feature evw.
The processed edge feature is multiplied with h

t
w to yield

a message from node w to v. In this case, the processed
edge feature MLP(evw) can be viewed as a weight for h

t
w.

Borrowing the idea of node attention, we add an attention
coefficient ↵vw to further modify the weight of h

t
w. The

attention coefficient is a function of h
t
v and h

t
w. The update

function Ut can be either a gated recurrent unit (GRU) or an
MLP. To further elucidate the design of the MPNN node, we
divide it into the following five categories of operations.

1) State dimension: After running T times, the MPNN
node maps the input node feature to a d-dimensional
vector. The choice of state dimension d is important for
final prediction. To reduce the number of parameters and
increase the generalizability, the set of state dimensions
is set to {4, 8, 16, 32}.

2) Attention function: Although the information passing
weight between nodes is governed by the edge feature in
traditional MPNNs, the attention mechanism helps focus
on the most relevant neighboring nodes to improve infor-
mation aggregation. Following NAS frameworks in [17],
[18], the attention functions used to calculate coefficient
↵vw are shown in Table I. For constant attention, ↵vw

is always 1. For GCN attention, ↵vw is 1p
|N (v)|·|N (w)|

,

where |N (v) | and |N (w) | represent the number of

3

~1010 possible designs Manual design: trial and
error and time consuming
(aka graduate student
descent)

4

Degrees of Freedom in Neural Networks Design

Algorithm Hyperparameters Architecture Variables

Optimizer: SGD, RMSprop, Adam…
Learning rate
Minibatch size

Learning rate scheduler
Adaptative batch size

…

Number of layers
Type of the layer: Fully Connected, Convolution,

Recursive…
Activation function

Dropout rate
Skip connection

…

5

DeepHyper

Search

Hyperparameter Search

Random,
Bayesian

optimization

Neural Architecture
Search

Random, Bayesian,
Genetic

algorithms

Joint Neural and
Hyperparameter

Search

Genetic+Bayesian
optimization

Workflow

Ray, MPI

DeepHyper documentation: http://deephyper.readthedocs.io

DeepHyper: Scalable AutoML

http://deephyper.readthedocs.io/

6

Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

Asynchronous Bayesian Optimization

7

DeepHyper

Search

Hyperparameter Search

Random,
Bayesian

optimization

Neural Architecture
Search

Random, Bayesian,
Genetic

algorithms

Joint Neural and
Hyperparameter

Search

Genetic+Bayesian
optimization

Workflow

Ray, MPI

DeepHyper documentation: http://deephyper.readthedocs.io

DeepHyper: Scalable AutoML

http://deephyper.readthedocs.io/

8

Configuring Neural Architecture Search

How do we define a space of neural networks?
A neural network search space can be represented as a directed acyclic
graph with nodes and edges.

Nodes represent possible operations, for example:
1. Add an identity layer
2. Add a layer with 40 neurons
3. Add a layer with 60 neurons
4. Add a dropout operation
5. Add a skip connection to another node

• Nodes can be constant – (i.e., predefined and immutable during the
search)

• Nodes can be variable – (i.e., the search can tweak these to get better
performance)

• Each variable node has an upper bound on the number of operations
(which may be expressed as a categorical variable). Edges define the
flow of the tensor in the graph

2XWSXW

,QSXW

9

Skip Connections

Loss surface: with and without skip connections
Physics-informed neural networks

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. "Visualizing the loss landscape of neural nets." Advances in
neural information processing systems 31 (2018).
A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. "Characterizing possible failure modes in physics-informed neural
networks." Advances in Neural Information Processing Systems 34 (2021).

10

Fun to
generate
random
architectures!

68,152
parameters

172,424
parameters

344,424
Parameters
(more
skips/layers)

DeepHyper NAS-API

11

Exploring Search Space
Regularized ageing evolution to explore the search space of possible architectures

Real, Esteban, et al. "Regularized evolution for image classifier architecture
search." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 2019.

(a) NOAA SST training data forecast (b) NOAA SST testing data forecast

Fig. 7. Post-training results with progress to convergence for the optimal architecture showing improved performance for longer training durations (top row).
Training and testing forecasts for the NOAA SST data set (bottom row) display the a posteriori performance after surrogate training.

Fig. 8. Sample forecast in the testing regime for the NOAA SST data set showing sea surface temperatures in degrees Celsius using the best architecture
found by DeepHyper. This snapshot corresponds to week 248 from the start of the testing data range.

(a) 40 � latitude, 80 � longitude (b) 50 � latitude, 80 � longitude (c) 55 � latitude, 80 � longitude

Fig. 9. Temporal probes for the temperature at three discrete locations on the global grid. While the seasonal phase of the temperature is reconstructed
accurately, the POD-LSTM implementation causes reduced accuracy in capturing some peaks and troughs of the probe temperature.

TABLE I
COEFFICIENTS OF DETERMINATION (R2) OF DIFFERENT FORECASTING METHODS ON THE NOAA SST DATA SET. HERE, TRAINING DATA AND

VALIDATION DATA ARE OBTAINED FROM 1980 TO 1990, WHEREAS TESTING DATA IS OBTAINED FROM 1991 TO 2010. NOTE THAT THE LSTM METRICS
ARE EXPRESSED IN ONE-LAYERED/FIVE-LAYERED CONFIGURATION.

Model NAS-POD-LSTM Linear XGBoost Random Forest LSTM-40 LSTM-80 LSTM-120 LSTM-200
1980-1990 0.985 0.801 0.966 0.823 0.916/0.944 0.931/0.948 0.922/0.956 0.902/0.963
1991-2010 0.876 0.172 -0.056 0.002 0.742/0.687 0.734/0.687 0.746/0.711 0.739/0.724

8

Fig. 4. Comparison of node utilization for AE, RL, and RS for 128 compute
nodes on Theta. Each search was run for 3 hours of wall time. AE achieves
optimal node utilization (almost matching RS) whereas RL is less efficient
because of synchronization during the reinforcement learning gradient update.

architecture can remain in the population for a long time only
when its retraining accuracy is high for multiple generations.
Consequently, the aging mechanism helps navigate the training
noise in the search process and provides a regularization
mechanism. RL lacks such a regularization mechanism, and
the slower convergence can be attributed to the synchronous
gradient update mechanism at the inter- and intra-agent levels.
Figure 4 shows the average node utilization of the three
methods over time. We observe that the node utilization of AE
and RS are close to 1, meaning that all the nodes are occupied
most of the time. However, the RL node utilization is between
0.5 and 0.6. This can be attributed to two factors: the gradient
averaging across agents is synchronous, and each agent needs
to wait until all its workers finish their evaluations before
computing the agent-specific gradient. In the beginning, each
agent will generate a wide range of architectures, and each
can have different training time. The worker nodes for a given
agent cannot proceed to the next batch of evaluations, and
they become idle because one or more worker nodes require
more time to finish the training. This situation has previously
been observed in [4] within DeepHyper. Note that AE and RS
do not have such utilization bottlenecks. Indeed, AE and RS
can execute more evaluations (8,806 and 7,267, respectively)
compared with RL (4,740 evaluations) for the duration of the
search.

B. Post-training and science results

To ensure efficient NAS, one commonly solves a smaller
problem during the search itself before utilizing the best archi-
tecture discovered for the larger training task. This approach
helps us explore the large space of neural architectures more
efficiently. It also helps us deal with larger data sets if needed.
In this study, we utilized fewer epochs of training (20 epochs)
during the search and retrained from scratch using a greater
number of epochs during post-training (100 epochs). Here,
we show that retraining the best-stacked LSTM architecture
obtained from AE results in significant improvement.

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

,QSXW

/670

���XQLWV

/670

���XQLWV

/670

��XQLWV

2XWSXW

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

'HQVH

���XQLWV

Fig. 5. Best-found LSTM architecture for the NOAA SST data set using the
aging evolution search strategy on 128 compute nodes of Theta for 3 hours
of wall time.

Figure 5 shows the best architecture found by AE with 128
nodes. One can observe the unusual nature of our network
as evidenced by multiple skip connections. We utilized the
best architecture found by AE (in terms of validation R2) for
post-training and scientific assessments.

For post-training, we used the same hyperparameters as
specified in the NAS with the exception of a longer training
duration of 100 epochs (instead of 20 for the search). In
addition, our architecture search as well as our post-training
utilized a sequence-to-sequence learning task where the his-
torical temperatures (in a sequence) were used to predict a
forecast sequence of the same length (i.e., measurements of 8
weeks of sea-surface temperature data were utilized to predict
8 weeks of the same in the future). This may also be seen
in the output space of the best-found architectures where the
second dimension of the output tensor is the same as the one
used for the input.

The results from the post-training are shown in Figure 6,
where one can see that the best architecture improves on its

6

R. Maulik, R. Egele, B. Lusch, and P. Balaprakash. Recurrent Neural Network Architecture Search for Geophysical Emulation.
In SC ’20: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 2020.

Searching for a Surrogate LSTM:
Sea Surface Temperature Forecasting

Searching for a Surrogate LSTM:
Sea Surface Temperature Forecasting

R. Maulik, R. Egele, B. Lusch, and P. Balaprakash. Recurrent Neural Network Architecture Search for Geophysical Emulation.
In SC ’20: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 2020.

ALCF/Theta

Cancer Drug Response:
predicting the activity of a drug treatment against a cancer cell

ALCF/ThetaGPU

Method–GPU(s)/Eval–Nodes

R. Egele, P. Balaprakash, I. Guyon, V. Vishwanath, F. Xia, R. Stevens, Z. Liu. AgEBO-tabular: joint neural architecture and
hyperparameter search with autotuned data-parallel training for tabular data. In SC ’21: IEEE/ACM International Conference on
High Performance Computing, Networking, Storage and Analysis, 2021.

Active Research Topics

• AutoML at (exa-)scale
• Deep ensembles and uncertainty quantification
• Multiobjective optimization (accuracy, inference time, #params)
• Designing insect-brain inspired learning algorithms for

neuromorphic computing
• Software/hardware co-design, compiler optimization, data services

management
• Continual/transfer learning across similar tasks

16

The DeepHyper Community

Stefan Wild Venkatram
Vishwanath

Misha Salim Romit Maulik

Bethany Lusch

Elise Jennings

Tom UramTaylor Childers

Kyle Gerard Felker

Matthieu Dorier

Shengli Jiang Mansi Sakarvadia

Sam ForemanSandeep Madireddy

Tanwi Mallick Bruce Ray Wilson Felix Perez

Romain Egele

17

Acknowledgements

DOE Early Career Research Program, ASCR

Argonne Leadership Computing Facility

Laboratory Directed Research and Development (LDRD)

18

DeepHyper

Search

Hyperparameter Search

Random,
Bayesian

optimization

Neural Architecture
Search

Random, Bayesian,
Genetic

algorithms

Joint Neural and
Hyperparameter

Search

Genetic+Bayesian
optimization

Workflow

Ray, MPI

DeepHyper documentation: http://deephyper.readthedocs.io

DeepHyper: Scalable AutoML

http://deephyper.readthedocs.io/

