

DeepHyper: Automated Machine Learning at Scale

Prasanna Balaprakash Computer Scientist Mathematics & Computer Science Division Leadership Computing Facility Argonne National Laboratory <u>pbalapra@anl.gov</u> <u>https://www.mcs.anl.gov/~pbalapra/</u>

AI/ML for DOE applications

Diverse data types

Degrees of Freedom in Neural Networks Design

~10¹⁰ possible designs

Manual design: trial and error and time consuming (aka graduate student descent)

Degrees of Freedom in Neural Networks Design

Algorithm Hyperparameters

Optimizer: SGD, RMSprop, Adam... Learning rate Minibatch size Learning rate scheduler Adaptative batch size

. . .

Architecture Variables

Number of layers Type of the layer: Fully Connected, Convolution, Recursive... Activation function Dropout rate Skip connection

. . .

DeepHyper: Scalable AutoML

DeepHyper documentation: http://deephyper.readthedocs.io

Asynchronous Bayesian Optimization

Algorithm: Asynchronous BO /* Initialization */ 1 optimizer \leftarrow optimizer() 2 for $i \leftarrow 1$ to W do $configs.h_m \leftarrow random_point(H_m)$ 3 submit_evaluation(configs) // Nonblocking 4 5 end /* Main loop */ 6 while not done do // Query results $results \leftarrow get_finished_evaluations()$ 7 if |results| > 0 then 8 optimizer.tell(results.h_m, results.valid_accuracy) 9 $next \leftarrow optimizer.ask(|results|)$ 10 submit_evaluation(next) // Nonblocking 11 end 12 13 end

Unevaluated parameter

Surrogate Model Fitted to Sampled Performance (iterative refinement improves the learning model)

DeepHyper: Scalable AutoML

DeepHyper documentation: http://deephyper.readthedocs.io

Configuring Neural Architecture Search

How do we define a space of neural networks?

A neural network search space can be represented as a directed acyclic graph with nodes and edges.

- Nodes represent possible operations, for example:
- 1. Add an identity layer
- 2. Add a layer with 40 neurons
- 3. Add a layer with 60 neurons
- 4. Add a dropout operation
- 5. Add a skip connection to another node
- Nodes can be constant (i.e., predefined and immutable during the search)
- Nodes can be variable (i.e., the search can tweak these to get better performance)
- Each variable node has an upper bound on the number of operations (which may be expressed as a categorical variable). Edges define the flow of the tensor in the graph

Skip Connections

Loss surface: with and without skip connections Physics-informed neural networks

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018). A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. "Characterizing possible failure modes in physics-informed neural networks." Advances in Neural Information Processing Systems 34 (2021).

9

DeepHyper NAS-API

search_space = create_search_space(num_layers=5)
ops = [random() for _ in range(search_space.num_nodes)]
search_space.set_ops(ops)
model = search_space.create_model()
model.summary()
plot_model(model, to_file='sampled_neural_network.png', show_shapes=True)
print("The sampled_neural_network.png file has been generated.")

Fun to generate random architectures!

172,424

parameters

344,424 Parameters (more skips/layers)

Istm_30: LSTM input: (None, 8, 16) output: (None, 8, 5)

Exploring Search Space

Regularized ageing evolution to explore the search space of possible architectures

Real, Esteban, et al. "Regularized evolution for image classifier architecture search." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 2019.

Searching for a Surrogate LSTM: Sea Surface Temperature Forecasting

R. Maulik, R. Egele, B. Lusch, and P. Balaprakash. Recurrent Neural Network Architecture Search for Geophysical Emulation. In SC '20: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 2020.

Searching for a Surrogate LSTM: Sea Surface Temperature Forecasting

ALCF/Theta

R. Maulik, R. Egele, B. Lusch, and P. Balaprakash. Recurrent Neural Network Architecture Search for Geophysical Emulation. In SC '20: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 2020.

Cancer Drug Response: predicting the activity of a drug treatment against a cancer cell

Method–GPU(s)/Eval–Nodes

ALCF/ThetaGPU

R. Egele, P. Balaprakash, I. Guyon, V. Vishwanath, F. Xia, R. Stevens, Z. Liu. AgEBO-tabular: joint neural architecture and hyperparameter search with autotuned data-parallel training for tabular data. In SC '21: IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 2021.

Active Research Topics

• AutoML at (exa-)scale

- Deep ensembles and uncertainty quantification
- Multiobjective optimization (accuracy, inference time, #params)
- Designing insect-brain inspired learning algorithms for neuromorphic computing
- Software/hardware co-design, compiler optimization, data services management
- Continual/transfer learning across similar tasks

The DeepHyper Community

Romain Egele

Taylor Childers

Shengli Jiang

Misha Salim

Tom Uram

Mansi Sakarvadia

Stefan Wild

Matthieu Dorier

Elise Jennings

Venkatram Vishwanath

Sandeep Madireddy

Tanwi Mallick

Romit Maulik

Bethany Lusch

Bruce Ray Wilson

Kyle Gerard Felker

Sam Foreman

Felix Perez

16

Acknowledgements

DOE Early Career Research Program, ASCR

Argonne Leadership Computing Facility

Laboratory Directed Research and Development (LDRD)

DeepHyper: Scalable AutoML

DeepHyper documentation: http://deephyper.readthedocs.io

