

Active Learning with Rationales

Mustafa Bilgic

In collaboration with my PhD students

Bio

- Education
 - BS, University of Texas at Austin, 2000
 - Recommender systems and explanations
 - w/ Raymond Mooney
 - PhD, University of Maryland at College Park, 2010
 - Active learning and statistical relational learning
 - w/ Lise Getoor
- Currently
 - Associate Professor of Computer Science
 - Director of the Machine Learning Laboratory
 - Director of the Masters in Artificial Intelligence Program

Research Interests

- Machine learning
- Probabilistic graphical models
- Recommender systems
- Active machine learning

Recent Projects

- Active learning
- Active inference
- Learning with rationales
- Filter bubbles in news recommender systems
- Deep learning for biological image analysis
- Active evaluation
- Human-like classification

Recent Projects

- Active learning
- Active inference
- Learning with rationales
- Filter bubbles in news recommender systems
- Deep learning for biological image analysis
- Active evaluation
- Human-like classification

Machine Learning Background

Machine Learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Machine Learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Supervised learning

- Train a predictive model on instances of data
- The model is a function that maps data to a target $f:X \rightarrow Y$
- Humans provide the *supervision* on instances

The X in *f*: $X \rightarrow Y$

- 1. Feature-based representation
 - Each instance is a vector of features
 - A patient: symptoms, laboratory test results, ...
 - A loan application: income, credit score, ...
 - A document: a bag of words
 - An image: scale-invariant feature transform (SIFT)
 - Gene sequence: n-grams, ...
 - Vector-based classifiers
 - Naïve Bayes, logistic regression, decision trees, support vector machines, neural networks, ...

The X in *f*: $X \rightarrow Y$

- 2. Similarity-based representation
 - Pair-wise similarity among the instances
 - How similar are these images, documents, gene sequences, ...?
 - Similarity-based classifiers
 - Nearest neighbor, support vector machines

The X in *f*: $X \rightarrow Y$

- 3. Image, text, sequence, "raw" data
 - Let the classifier learn the "features"
 - Neural networks with several hidden layers
 - a.k.a. deep learning
 - Examples
 - Convolutional neural networks for image analysis
 - Long Short-Term Memory networks for text analysis

The Y in $f: X \rightarrow Y$

- The target variable
 - Patients: the diagnosis
 - Loan application: the decision
 - Document: the category
 - Image: the person
- Often, it is hard to obtain, because it might require
 - Expertise
 - Manual labor
 - Laboratory tests

Bias-Variance Trade-off

- The more assumptions a model makes, the less data it needs
 - Naïve Bayes typically requires less data than logistic regression
- The fewer the assumptions a model makes, the more data it needs
 - Deep learning with millions of parameters
 - GPT-3 has 175 billion parameters

1. Active Learning

Active Learning

- The X is plenty; the Y is scarce
- X; Y

• ...

- Images; annotations
- Speech; transcription
- Text; translation
- Review; sentiment
- News; category

How to choose few, but useful instances for labeling?

Active learning algorithm

Human Expert

Active learning strategies

- Common utility-based active learning algorithms:
 - Query-by-Committee [Seung, Opper & Sompolinsky, COLT'92]
 - Uncertainty Sampling [Lewis & Gale, SIGIR'94]
 - Variance Reduction [Cohn, Ghahramani & Jordan, JAIR'96]
 - Bias Reduction [Cohn, NIPS'97]
 - Expected Error Reduction [Roy & McCallum, ICML'01]
 - And many more...

Ask the learner "why"

Uncertainty sampling

[Lewis & Gale, SIGIR'94]

- Queries instances about which the classifier is most uncertain how to label
- E.g., entropy as an uncertainty measure

$$x^* = \underset{x^{(i)} \in \mathcal{U}}{\operatorname{argmax}} - \sum_{y \in Y} P_{\theta}(y|x^{(i)}) \log \left(P_{\theta}(y|x^{(i)}) \right)$$

Ask the learner why it is uncertain about x^*

• Y=+1

Evidence-based framework

We discovered two reasons for model's uncertainty on instances

Insufficient-evidence uncertainty:

Traditional uncertainty sampling:

Does not consider the reasons for uncertainty, as long as $E_{-1}(X) \approx E_{+1}(X)$

Datasets & measures

Eight datasets:

Dataset	Domain	Size	Minority class %	
Spambase	Email. classification	4,601	39.4%	7
Ibn Sina	Handwriting recognition	20,722	37.8%	- Medium-imbalanced
Calif. Housing	Social	20,640	29%	
Nova	Text processing	19466	28.4%	
Sick	Medical	3,772	6.1%	- Highly-imbalanced
Zebra	Embryology	61,488	4.6%	
LetterO	Letter recog.	20,000	4%	
Hiva	Chemo-inform.	42,678	3.5%	

Performance measures:

- AUC: All datasets
- Accuracy: Medium-imbalanced datasets
- F1: Highly-imbalanced datasets

How to interpret the results?

Budget, e.g., Number of instances

Results – Ibn Sina dataset

2. Learning with Rationales

Ask the humans "why"

Learning with Rationales Text Classification

The approach

How do we use <x, y, r> for supervised learning?

Datasets & experimental setup

Four text classification datasets:

Dataset	Description	# instances	# Features
IMDB	Sentiment analysis of movie reviews	25,000	27,272
NOVA	20 Newsgroups dataset: Email classification	12,977	16.969
SRAA	UseNet articles: Aviation vs. Auto	48,812	31,883
WvsH	20 Newsgroups dataset: Windows vs. Hardware	1176	4,026

Three classifiers:

- Multinomial naïve Bayes (MNB)
- Logistic regression (LR)
- Support vector machines (SVM)

Two data representations:

- Binary
- Tf-idf

Results – SRAA dataset with MNB

Learning with Rationales Anomalous Flight Detection

Collaboration w/ NASA

OS: operationally significant **NOS:** not operationally significant

Flights data

GOAL: <u>effectively</u> train a model to identify operationally significant (OS) anomalies using <u>less time</u> of experts

Flights data

ORIGINAL FEATURES

- Latitude
- Longitude
- Altitude •
- Horizontal separation
- Vertical separation
- Turn-to-final (TTF) parameters:
 - Maximum overshoot
 - Speed at TTF
 - Distance at TTF
 - Angle at TTF
 - Altitude difference at TTF
- Nearest neighboring (NN) flight info:
 - NN flight on same runway
 - NN flight on parallel runway
 - NN flight part of the same flow

Runway

Rationales

"Large overshoot"

 Maximum overshoot is greater than a threshold based on values of flights with positive labels

"Unusual flight path"

 Overall deviation from expected (average) trajectory of all landing flights on that runway

Deviation from expected path

Active learning framework

Selecting informative flights

Active learning strategy: Most-likely positive strategy

Objective function: $\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{U}}{\operatorname{arg\,max}} P_{\theta}(\hat{\mathbf{y}}^+ | \mathbf{x})$

Including rationales into learning

Including rationales improves performance over learning with labels only

3. Fresh, still in the oven, projects

Projects currently in the oven

- Active evaluation
 - Curate a dataset for only evaluation purposes
- Human-like classification
 - Given a case, skim all features but focus on what is most important <u>for</u> that case

Collaboration Opportunities

- We develop methods
 - Active learning, learning with rationales, active evaluation, human-like classification, etc.
- Collaboration opportunities
 - 1. Application areas
 - If you have problems/datasets where these methods might be applicable (not enough labeled data, experts provide rationales, human-like and interpretable decision making, etc.), I'd be very happy to discuss them and work with you

AND/OR

- 2. Foundational work
 - If you also work on these areas, I'd be very happy to talk to you about potential collaboration opportunities
- Please see the next slide for my contact info

Contact Email: <u>mbilgic@iit.edu</u> Lab: <u>http://ml.cs.iit.edu</u>

