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Introduction to statistical modeling

Motivations:
- provide and quantify uncertainty (data, prediction, model, ...)
- comprehensive description of data (correlation, variable importance, extremes, ...)
- overcome lack of data (conditional emulation, prediction, fusion, ...)
- complement physics-driven models
- emulate realistic samples very efficiently

Approach:
→ Reproduce target quantities of interest
probabilistic distribution, time series dynamics, space-time dependence, interaction
between variables, ...
→ Build parametric structures to describe distributions, covariances, ... → our focus

Challenges:
nature of the data, amount of data, non-stationarity, dependencies and correlations,
multiple scales, rare events, errors and uncertainty in the data
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Statistical modeling workflow

Data analysis & problem formulation
↓

Construction of a parametric model: (Research topic)
Ex.: Autoregressive process, Xt+1 = ρXt + σεt+1, t ≥ 0

↓
Estimation of the model parameters: (Research topic)
Least square, Maximum likelihood, ...
Ex.: Estimate ρ and σ to match data as well as possible

↓
Evaluation of fitted model: (Research topic)
Associated with the targeted application and features and use of scalar metrics
(mean-squared error, scores, ...)

↓
Inference, prediction, simulation by Monte-Carlo,... (Research topic)
Ex.:

- Prediction: x̂t+1 = ρxt

- Simulation: x0 ∼ P0, ε ∼ Pε, and for (i in 1 : N), xi+1 = ρxi + σεi



Exploring lossy compressibility through
statistical correlations of scientific

datasets

Julie Bessac (ANL), Robert Underwood (ANL), David Krasowska (Clemson
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compressibility through statistical correlations of scientific datasets.
In 7th International Workshop on Data Analysis and Reduction for Big Scientific Data in conjunction with SC
’21: The International Conference for High Performance Computing, Networking, Storage and Analysis -
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Context and goals

· Lossy compressors are increasingly adopted in scientific research
→ tackle large amount of data generated by experiments or simulations
→ facilitating data storage and movement in high-performance computing systems

· In lossless compression, entropy provides theoretical limit on compressibility of
data but there are no equivalent for lossy compressors

Characterize statistics of the data that impact lossy compression, e.g. correlation
structures, patterns, range of values, spatial heterogeneity, ...
& build prediction models for compression ratios

· These models will form the first step towards evaluating theoretical limits of
lossy compressibility
→ how far are existing compressors to optimality
→ help optimize compressors allow maximum efficiency for storing scientific
datasets
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Prediction of lossy compression ratios

Variety of compressors
SZ (prediction-based), ZFP (transform-based), MGARD
(multigrid), Digit Rounding & Bit Grooming (rounding-based)
→ compression ratios (CR)

Statistics of interest (compressor-free)
- Correlation strength extracted from singular value
decomposition SVD truncation
- Standard deviation (variability and value range)
- Lossyness and patterns from quantized entropy

Data used to train regression models numerical simulations
(cosmology, atmospheric, hydrodynamic)

Regression models

log(CR) = s(log(q-ent))+s

(
log

(
SVD-trunc

σ

))
+ti

(
log(q-ent), log

(
SVD-trunc

σ

))
+ε,

→ regression fitted on observed CR and statistics computed on the data
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Results and discussion

Out-of-sample prediction of CR Very good compression ratio prediction
with spline regression

Framework still relies on the use of
compressors → how to go further and
provide a compressor-free
characterization of compressibility?

Interesting questions on the statistical
side → how to summarize multiscale
and-or correlation heterogeneity into
scalar quantities?



Nonstationary seasonal model for daily
mean temperature distribution bridging

bulk and tails
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Motivations and data

· While global mean temperature has been rising
→ regional temperature exhibits various patterns of change, including extremes
e.g. warmest temperatures are stretching and main cold temperature are shrinking

· Daily mean surface air temperature (SAT) from
NCEI’s Global Surface Summary of the Day

· Objective: Nonstationary (seasonal and
long-term trend) model for entire distribution of
daily temperature, focusing on behavior in both
tails (hot and cold extremes) [Krock et al., 2022]

· Most statistical methods for extremes focus on
one tail of the distribution (Generalized Extreme
Value distribution, Generalized Pareto
distribution)

Eight locations with very
different climates and

geographies
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Building on (Stein 2020) that introduced “Bulk-And-Tails” (BATs) model for the entire
distribution with flexible behavior in both tails

Fθ(x) = Tν(Hθ(x)) with Tν t-cdf with ν d.o.f.

Hθ(x) =

(
1 + κ1Ψ

(
x − φ1

τ1

))1/κ1

−
(

1 + κ0Ψ

(
φ0 − x

τ0

))1/κ0

Ψ(x) = log(1 + exp(x)) and θ = (κ0, τ0, φ0︸ ︷︷ ︸
Lower tail

, κ1, τ1, φ1︸ ︷︷ ︸
Upper tail

)

· Comprehensive modeling of each tail
→ Heaviness: κ ; Location: φ ; Spread: τ

Minneapolis quantile changes over years
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Non-stationary seasonal extension [Krock et al., 2022]

Location parameters: φ.(day , year) =
seasonal(day)+trend(year)+seasonal(day)×trend(year)

Scale parameters: τ.(day) = seasonal(day)

Shape parameters estimated fixed across days and years

· Long-term trend approximated by log(CO2 equivalent)
(yearly covariate, proxy for climate change induced by
greenhouse gases)
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Seasonal quantiles

· BATs quantiles for year 2020:
0.001, 0.01, 0.1, 0.25, 0.5, 0.75, and
0.9, 0.99, 0.999

· Black lines: observation daily

minimum/median/maximum taken over all

years
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