
Virtualization at the
Edge

Kyle C. Hale
Laboratory for High-Performance Experimental Systems and Architecture (HExSA)

Argonne/IIT Research Seminar - March 30, 2022

1

The Cloud is Decentralizing:
Services and Infrastructure at the Edge

Kyle C. Hale 2

edge nodes

centralized cloud

user devices

infrastructure
services
content

The Cloud is Decentralizing:
Services and Infrastructure at the Edge

Kyle C. Hale 3

edge nodes

centralized cloud

user devices

infrastructure
services
content

Resources are becoming disaggregated in the
datacenter

Kyle C. Hale 4

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

high-performance
interconnect

Resources are becoming disaggregated in the
datacenter

Kyle C. Hale 5

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

high-performance
interconnect

user 1

Resources are becoming disaggregated in the
datacenter

Kyle C. Hale 6

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

CPUs RAM

GPU

FPGA

high-performance
interconnect

user 2user 1

Composable Infrastructure

Kyle C. Hale 7

source: https://www.liqid.com/why-liqid/benefits
source: https://www.westerndigital.com/products/data-center-
platforms/openflex-composable-infrastructure

https://www.hpe.com/us/en/greenlake/co
mposable-compute.html

Disaggregation at the Edge

Kyle C. Hale 8

edge nodes

centralized cloud

user devices

infrastructure
services
content

+fine-grained resources?

Kyle C. Hale 10

R.K. Balan and J. Flinn, “Cyber Foraging Fifteen Years Later,” IEEE Pervasive Computing, 16(3), July 2017.

What’s Changed?

• Virtualization technology has improved significantly
• Infrastructure provisioning has become more sophisticated (NB

serverless research)
• Composable infrastructure
• Hardware design more democratic
• AR/VR/XR is here

Kyle C. Hale 11

…also, wireless latency continues to drop

Kyle C. Hale 12

0

100

200

300

400

500

600

802.11 b a g n ac ax ax (6E)

O
ne

-w
ay

 L
at

en
cy

 fo
r 6

4K
B

(m
s)

WiFi Generation
~1ms one-way

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 14

location 1 location 2

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 15

location 1 location 2

User nears physical proximity of edge system

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 16

location 1 location 2

Resources coalesced into one logical system

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 17

location 1 location 2

User leaves environment,
resources relinquished

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 18

location 1 location 2

User approaches another edge system

Coalescent Computing
Ephemeral Single-System Image at the Edge

Kyle C. Hale 19

location 1 location 2

Resources coalesced again, subject
to performance, policy constraints

[Hale, Coalescent Computing, APSys ‘21]

Coalescent System Software

Kyle C. Hale 21

CPUs RAM

GPU

FPGA

user monitor

CPUs RAM

user device
Edge system

resource monitor

distributed VM
distributed VM

applications

control plane

data plane

wireless network

Current Work

• Adapting DSM-based approaches to the edge (e.g., GiantVM)
• Building a prototype co-designed hypervisor/OS for CC
• Applying PL techniques for coalescent offloading policies (collab. with

Stefan Muller)

Kyle C. Hale 23

Virtines
Isolating Functions at the Hardware Limit (to appear in EuroSys ‘22)

Kyle C. Hale 24

Developer-Friendly, Fast, Function Isolation

• Function isolation
• Web browsers – sandboxing [CVE-2009-2555, CVE-2009-2935, CVE-2017-2505...]

• Serverless/FaaS – containers, vms
• DB UDF - high level languages

• Low latency Startup, Short Lived Runtime
• Spawn and manage many functions w/o significant impact

• Easy programming interface

26

What might function isolation look like?

27

• Ephemeral state by
default (call stack)

• return destroys
the context

Macro Goals

29

Function
Granularity

Easy to integrateLow Latency
Startup

Virtines: Virtual Subroutines

• Hardware-virtualized isolated functions
• Microsecond level boot times
• Paravirtualization
• General purpose

31

The lower bounds of virtualization

36

It’s not the hardware that’s expensive…

• What is the latency of a
VM creation?
• HW/SW state

37
(on AMD EPYC 7281)

SW VM Allocation is
expensive

VM Interaction is cheap

Bootstrapping woes

38

Load GDT,
Mode switch,
long jump

Page Mapping,
CR3 Write,
Mode Switch,
Long Jump

Setup stack,
Setup segment registers

Traditional I/O is very expensive

• Try to make a VM feel like real hardware
• Requires large device drivers
• Lots of VM Exits for single ops (Expensive!)

• Paravirtualization
• Codesigned, VM aware of the Hypervisor
• I/O via hypercalls

39

HTTP server using hypercalls

40

Wasp: an implementation of
Virtines

41

Wasp

• A micro-hypervisor library
• Abstracts hardware specific interfaces
• Lean
• Heavily optimized

42

46

Allocating virtines with Wasp

47

Wasp is close to the hardware limit

Hardware Limit

C Language Extension

51

• Default-deny access to host services
• Custom LLVM module pass to

compile and manage virtines

Duktape JavaScript Engine

• Duktape JavaScript Engine: https://duktape.org/
• Embeddable, Portable

53

Application

Virtine
JavaScript Engine

HLL isolation

https://duktape.org/

Do our latency optimizations work?

54

Effectiveness of language extensions

55

Baseline: 50us, σ≈10us

Virtines: 80us, σ≈30us

How easy is it to integrate?

• ~20 lines of code changed
• Mostly glue logic

• Significantly slower... But we expect that
• 21kb

56

Serverless Virtines

• OpenWhisk/AWS Lambda are good examples of modern serverless
platforms
• Weak isolation between function instances!
• We developed our own using vitrines (based on OW)

57

58

Serverless Platform Interface

59

We can use virtines as drop-in replacement
for containers!

Kyle C. Hale 60

Thanks!

61

• HExSA Lab: hexsa.halek.co
• Thanks to MD Ali, Conghao Liu, Brian Tauro, Stefan Muller
• Virtines code available: github.com/virtines
• Thanks to Nick Wanninger (virtines lead author)
• Email: ncw@u.northwestern.edu
• Website: https://nickw.io

• Also Josh Bowden, Kirtan Shetty, Ayush Garg

mailto:ncw@u.northwestern.edu
https://nickw.io/

