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The Cloud is Decentralizing: 
Services and Infrastructure at the Edge
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Resources are becoming disaggregated in the 
datacenter
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Composable Infrastructure
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source: https://www.liqid.com/why-liqid/benefits
source: https://www.westerndigital.com/products/data-center-
platforms/openflex-composable-infrastructure

https://www.hpe.com/us/en/greenlake/co
mposable-compute.html



Disaggregation at the Edge
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R.K. Balan and J. Flinn, “Cyber Foraging Fifteen Years Later,” IEEE Pervasive Computing, 16(3), July 2017.



What’s Changed?

• Virtualization technology has improved significantly
• Infrastructure provisioning has become more sophisticated (NB 

serverless research)
• Composable infrastructure
• Hardware design more democratic
• AR/VR/XR is here
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…also, wireless latency continues to drop
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Coalescent Computing 
Ephemeral Single-System Image at the Edge
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location 1 location 2

Resources coalesced into one logical system
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location 1 location 2

User leaves environment, 
resources relinquished
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Coalescent Computing 
Ephemeral Single-System Image at the Edge
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location 1 location 2

Resources coalesced again, subject
to performance, policy constraints

[Hale, Coalescent Computing, APSys ‘21]



Coalescent System Software
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Current Work

• Adapting DSM-based approaches to the edge (e.g., GiantVM)
• Building a prototype co-designed hypervisor/OS for CC
• Applying PL techniques for coalescent offloading policies (collab. with 

Stefan Muller)
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Virtines
Isolating Functions at the Hardware Limit (to appear in EuroSys ‘22)
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Developer-Friendly, Fast, Function Isolation

• Function isolation
• Web browsers – sandboxing [CVE-2009-2555, CVE-2009-2935, CVE-2017-2505...]

• Serverless/FaaS – containers, vms
• DB UDF - high level languages

• Low latency Startup, Short Lived Runtime
• Spawn and manage many functions w/o significant impact

• Easy programming interface
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What might function isolation look like?
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• Ephemeral state by 
default (call stack)

• return destroys 
the context



Macro Goals
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Function 
Granularity

Easy to integrateLow Latency 
Startup



Virtines: Virtual Subroutines

• Hardware-virtualized isolated functions
• Microsecond level boot times
• Paravirtualization
• General purpose
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The lower bounds of virtualization
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It’s not the hardware that’s expensive…

• What is the latency of a 
VM creation?
• HW/SW state

37
(on AMD EPYC 7281)

SW VM Allocation is 
expensive

VM Interaction is cheap



Bootstrapping woes
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Load GDT,
Mode switch,
long jump  

Page Mapping,
CR3 Write,
Mode Switch,
Long Jump

Setup stack,
Setup segment registers



Traditional I/O is very expensive

• Try to make a VM feel like real hardware
• Requires large device drivers
• Lots of VM Exits for single ops (Expensive!)

• Paravirtualization
• Codesigned, VM aware of the Hypervisor
• I/O via hypercalls
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HTTP server using hypercalls

40



Wasp: an implementation of 
Virtines
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Wasp

• A micro-hypervisor library
• Abstracts hardware specific interfaces
• Lean
• Heavily optimized
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Allocating virtines with Wasp
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Wasp is close to the hardware limit

Hardware Limit



C Language Extension
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• Default-deny access to host services
• Custom LLVM module pass to 

compile and manage virtines



Duktape JavaScript Engine

• Duktape JavaScript Engine: https://duktape.org/
• Embeddable, Portable
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Application

Virtine
JavaScript Engine

HLL isolation

https://duktape.org/


Do our latency optimizations work?
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Effectiveness of language extensions 
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Baseline: 50us, σ≈10us

Virtines: 80us, σ≈30us



How easy is it to integrate?

• ~20 lines of code changed
• Mostly glue logic

• Significantly slower... But we expect that
• 21kb
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Serverless Virtines

• OpenWhisk/AWS Lambda are good examples of modern serverless 
platforms
• Weak isolation between function instances!
• We developed our own using vitrines (based on OW)
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Serverless Platform Interface
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We can use virtines as drop-in replacement 
for containers!
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Thanks!
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• HExSA Lab: hexsa.halek.co
• Thanks to MD Ali, Conghao Liu, Brian Tauro, Stefan Muller
• Virtines code available: github.com/virtines
• Thanks to Nick Wanninger (virtines lead author)
• Email: ncw@u.northwestern.edu
• Website: https://nickw.io

• Also Josh Bowden, Kirtan Shetty, Ayush Garg

mailto:ncw@u.northwestern.edu
https://nickw.io/

