
High Performance Computing with 
Emerging Memory Architectures

Rujia Wang
2022/03/23



About me

Rujia Wang - Assistant Professor @ Illinois Tech CS 
• https://rujiawang.github.io/

• rwang67@iit.edu

Research interest:
• Computer architecture

• Memory systems

• Emerging memory technologies

• Architectural support for security and privacy 

1

https://rujiawang.github.io/
mailto:rwang67@iit.edu


An overview on current memory system 2

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3

L2 C
A

C
H

E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM 
MEMORY 
CONTROLLE
R



Challenges of current memory system

• Performance
• Memory technology(e.g., DRAM) scaling is much more difficult than the processor
• Memory latency has not been changed much
• Memory bandwidth becomes the major performance bottleneck 

• Energy Consumption
• Frequent accessing the memory could cause high energy consumption
• A memory access consumes ~1000x the energy of a complex ALU addition[Dally, 

HiPEAC 2015]

• Heterogeneity
• Heterogeneity exists across multi-tier memory system
• Data placement and management could significantly impact the overall 

performance

3



Process-in-memory(PIM) paradigm

• Instead of processing in the CPU, we can process 
tasks in the memory instead
• -> process in memory 
• -> incorporate logic/cores in memory banks or on DIMMs

• Benefits of PIM paradigm:
• compute closer to data
• less data movement on bus
• mitigates memory bandwidth and latency bottleneck
• improves the energy efficiency

4

CPU

Memory

CPU

Memory

PIM logic

Von Neumann Arch. v.s. PIM Arch.



Process-in-memory(PIM) prototypes

• Samsung HBM-PIM, 2021

5

• UPMEM DIMM, 2020

128 PIM units per HBM @ 300MHz
Each PIM unit has 16 MUL/ADD FPUs, 
~1TB/s compute bandwidth [ISCA’21]

128 PIM DPUs per DIMM @450MHz
The DPU is a 24 threads, 32b RISC processor,
each compute at 1GB/s BW (2.56TB/s for 2560 DPUs) 
[HOTCHIPS’19]



PIM Computation Model

• Use PIM as a co-processor
• Offloading tasks from host CPU to the PIM cores
• Similar to the CPU-GPU computation model, but requires NO data movement on external 

bus/links

• Questions to be answered..
• What/when to offload? 
• Offload granularity?
• Best strategy to layout data?
• Best strategy to schedule workloads on PIM cores?

6



Use PIM to accelerate data mining workloads

• Graph pattern mining (GPMI) needs to 
generate patterns and do pattern 
matching according to the requirements 
of the application.

• Frequently used in data mining domains 
like bioinformatics, chemical reactions, 
social networks, etc.

• E.g., Motif counting (MC) is to identify 
all motifs (patterns) with k vertices and 
count the embeddings of each of the 
patterns.

7

3-size patterns

0

1 2

Pattern 1

0

1 2

Pattern 2

4-size patterns

0

2 3

Pattern 1

1 0

2 3

Pattern 2

1 0

2 3

Pattern 3

1

0

2 3

Pattern 4

1 0

2 3

Pattern 5

1 0

2 3

Pattern 6

1



Use PIM to accelerate data mining workloads

• Core computation kernel:
• Intensive vertex neighbor list 

Intersection/Subtraction

8

• Very time consuming and memory 
intensive, may be a good candidate for 
PIM acceleration



Challenges

• Simply offload the I/S computation 
kernel in GPMI cannot fully utilize the 
advantages of PIM hardware

• The PIM execution time is close to or 
longer than CPU execution time with the 
same core number

• Issues that we identify:
• Load imbalance 
• Suboptimal data mapping
• Locality
• PIM internal heterogeneity

9

PIM



Key techniques

Reduce 
unnecessary data 

accesses from 
remote banks

Locality-aware 
address mapping 
to leverage near-
bank acceleration

Critical data copy
near PIM cores

Lightweight 
workload stealing 

to balance 
computation 
across cores

10



PIM architectural aware GPMI acceleration 11

1.8x-5.5x speedup compared to baseline



PIM architectural aware GPMI acceleration 12

1.8x-6.7x speedup compared to baseline



Some takeaways

• PIM has the potential to accelerate many memory-intensive workloads
• PIM cores can outperform CPU and GPU by leveraging the internal 

memory bandwidth with parallel computing
• Accelerating irregular workloads (e.g., graph applications) requires full-

stack co-designs
• There is a lack of a holistic management framework for PIM-assisted 

systems due to the changing workloads and the missing abstraction of 
PIM hardware

• Current in collaboration with IIT CS (Kyle Hale, Xian-He Sun), ECE (Ken 
Choi) and other universities faculties to work on these challenges

13



Open collaborative research topics

PIM for other data-intensive workloads
• HPC and scientific computing workloads
• Graph neural network

PIM at a scale
• Integration with HPC systems and components
• runtime resource management, e.g., inter-PIM communication
• Programming interface

14



Thank you –
Questions?

Rujia Wang – rwang67@iit.edu - https://rujiawang.github.io/ 15

mailto:rwang67@iit.edu
https://rujiawang.github.io/

