

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infer Examples

KL-divergend MMD

Conclusion

Energetic Variational Inference

Lulu Kang

Illinois Institute of Technology

April 6, 2022. Illinois TechArgonne CELS Research Seminar

Energetic Variational Inference Lulu Kang	
About Me	
Energetic Variational	
Inference	
Motivation Variational Inference	About Me
Examples	
KL-divergence MMD	
Conclusion	

Lulu Kang

About Me

- Energetic Variational Inference
- Variational Infere

Examples KL-divergence MMD

Conclusion

- Education
 - B.S. in Mathematics, Nanjing University, China.
 - M.S. in Operations Research, Georgia Institute of Technology.
 - Ph.D. in Industrial Engineering, Georgia Institute of Technology.
- Academic Appointment
 - Associate Professor in Applied Mathematics
 - Associate Director of Master of in Data Science, 2013-2022.
 - Director of B.S. in Data Science (new in Fall 2022), 2022-

Research Interests

Energetic Variational Inference

Lulu Kang

About Me

- Energetic Variational Inference Motivation Variational Inferen
- Examples KL-divergence MMD
- Conclusion

Statistics

- Causal Inference
 Statistical Design and Analysis of Experiments
- Statistical Learning
- Uncertainty Quantification
- Bayesian Statistics

Optimization

- •Optimization methods in statistics
- Machine Learning
- •Applications in other domains

Collaboration

- Material Sciences
- Chemistry
- Mechanical Engineering
- Health care

Lulu Kang

About Me

Energetic Variational Inference

Motivation

Variational Inference

Examples KL-divergence MMD

Conclusion

Energetic Variational Inference

Lulu Kang

About Me

- Energetic Variational Inference
- Motivation Variational Inference
- Examples KL-divergence MMD
- Conclusion

- Bayesian inference: generate samples from the posterior distributions, which are usually not any known ones.
- Space filling design: the target distribution is uniform.
- Quadrature: $I = \int_{\Omega} f(\boldsymbol{x}) d\mu(\boldsymbol{x}) \approx \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i)$ where $\boldsymbol{x}_i \sim^{iid} \mu(\boldsymbol{x})$.
- Generative learning: based on existing samples, generate prediction or make classification on the queries or generate new samples.

· · · ·

Variational Inference in a Nutshell

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference

Motivation

Variational Inference

- Examples KL-divergence MMD
- Conclusion

- D(f₁||f₂) is a discrepancy or divergence measure, that measuring the difference between any two distributions, f₁ and f₂. Examples include KL-divergence, f-divergence, maximum mean discrepancy (MMD) also known as kernel discrepancy,...
- Variational Inference answers the question of how to minimize $D(f||f^*)$ such that minimal solution f would be as close as possible to the target distribution f^* .

Formal Introduction of Variational Inference

Energetic Variational Inference

Lulu Kang

- About Me
- Energetic Variational Inference Motivation

Variational Inference

- Examples KL-divergence MMD
- Conclusion

• Variational inference seeks to find an approximation $q^*(\theta)$ to approximate the target $p(\theta|D)$.

$$q^*(\boldsymbol{\theta}) = \arg\min_{q(\boldsymbol{\theta})\in\mathcal{Q}} D\left(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}|\mathcal{D})\right).$$

- Q is a user specified family of distributions where the approximation density is
 in. The complexity of Q determines the complexity of the optimization.
- Two questions:
 - how good is the approximation?
 - how to solve this minimization problem?

Possible Divergence

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variationa Inference

Variational Inference

Examples KL-divergence MMD

Conclusion

• $D(q(\theta)||p(\theta|D))$ can be KL-divergence, which measures the difference between two probability density functions.

$$\mathsf{KL}(p_1(\boldsymbol{x})||p_2(\boldsymbol{x})) = \int p_1(\boldsymbol{x}) \log \frac{p_1(\boldsymbol{x})}{p_2(\boldsymbol{x})} d\boldsymbol{x} = \mathbb{E}_{\boldsymbol{x} \sim q_1} \left(\log \frac{p_1(\boldsymbol{x})}{p_2(\boldsymbol{x})} \right).$$

■ $D(q(\theta)||p(\theta|D))$ can be maximum mean discrepancy (MMD), or *kernel* discprepancy.

$$\begin{aligned} \mathsf{MMD}^2(\mathcal{H},\nu_1,\nu_2) &= \mathbb{E}_{\boldsymbol{x},\boldsymbol{x}'\sim\nu_1}[K(\boldsymbol{x},\boldsymbol{x}')] \\ &- 2\mathbb{E}_{\boldsymbol{x}\sim\nu_1,\boldsymbol{y}\sim\nu_2}[K(\boldsymbol{x},\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{y}\sim\nu_2,\boldsymbol{y}'\sim\nu_2}[K(\boldsymbol{y},\boldsymbol{y}')] \end{aligned}$$

Many others.

Variational Inference: Pros and Cons

Energetic Variational Inference

Lulu Kang

About Me

- Energetic Variational Inference Motivation
- Variational Inference

Examples KL-divergence MMD

Conclusion

- Advantage of VI: it becomes an optimization problem and can be used to for large datasets and to explore many models; faster computation due to some existing stochastic optimization algorithms.
 - Disadvantage of VI: there is no convergence guarantee that the approximated density converges to the targeted density function as the algorithm iterates.
 - There are many variational inference methods:
 - Mean-field: classic, simple, but limited.
 - Stein Variational Gradient Descent: take advantage of the connection between derivative of KL divergence and stein operator; use limited number of particles to approximate the stein operator and find a series of mapping to map the original distribution of the particles to a distribution that is closest to the target distribution.
 - Other particle-based variational inference methods.

Energetic Variational Inference: Flow Maps

Energetic Variational Inference

Lulu Kang

Variational Inference

About Me

Minimize a chosen divergence through flow maps

 \mathcal{X}^0 $\boldsymbol{\phi}(\boldsymbol{z},t)$ \boldsymbol{z}

Figure: A schematic of a flow map $\phi(z,t)$. For t fixed, $\phi(z,t)$ maps \mathcal{X}^0 to \mathcal{X}^t . For z fixed, $\phi(z,t)$ is the trajectory of a particle with initial position z.

Energetic Variational Inference: Continuous Version

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference ^{Motivation} Variational Inference

Examples KL-divergence MMD

Conclusion

In an isothermal closed physics system, an energy dissipation law, is given by

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathcal{K} + \mathcal{F})[\boldsymbol{\phi}] = -2\mathcal{D}[\boldsymbol{\phi}, \boldsymbol{\phi}_t],\tag{1}$$

describes how the total energy of the system decreases with time, which is a consequence of the First and Second Law of thermodynamics.

- \mathcal{K} is the kinetic energy, we usually set it to be zero.
- \mathcal{F} is the Helmholtz free energy \Rightarrow Let \mathcal{F} be the divergence measure.
- $-2D \le 0$ is the rate of energy dissipation \Rightarrow specifies the mechanism of minimizing the divergence.
- ϕ is the state variable of the system.
- ϕ_t is the derivative of ϕ with respect to time.

Energetic Variational Inference: Discrete Version

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference ^{Motivation} Variational Inference

Examples KL-divergence MMD

Conclusion

In a particle-based variational inference, the time-dependent probability density $\rho({\bm x},t)$ is approximated by an empirical measure defined by a set of sample points $\{{\bm x}_i(t)\}$ (or particles)

$$\rho(\boldsymbol{x},t) \approx \rho_N^t(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{x}_i(t)),$$
(2)

where $x_i(t) = \phi(x_i(0), t)$. Instead of computing $\phi(z, t)$ explicitly at each time-step, only $x_i(t)$ is computed.

Energetic Variational Inference: Discrete Version

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference ^{Motivation} Variational Inference

Examples KL-divergence MMD

Conclusion

Discrete energy-dissipation law

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}_{h}(\{\boldsymbol{x}_{i}(t)\}_{i=1}^{N}) = -2\mathcal{D}_{h}(\{\boldsymbol{x}_{i}(t)\}_{i=1}^{N}, \{\boldsymbol{x}_{i}'(t)\}_{i=1}^{N}),$$
(3)

which can be obtained by inserting the empirical approximation (1) into the continuous energy-dissipation law with a suitable *kernel regularization*.

The EVI Framework: Algorithms

Figure: The flowchart of the proposed EVI framework and how to create its variations.

The EVI Framework: Foundations

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation

Examples KL-divergence MMD

Conclusion

Convergence issues for the continuous time t involve four versions of $\rho(x)$.

- 1 $\rho(x,t)$ -the continuous version of the density evolving at time t;
- 2 $\rho^{\infty}(x)$ -the limiting density function of $\rho(x,t)$ as $t \to \infty$;
- 3 $\rho_N(x,t)$ -the discretized version of $\rho(x,t)$ by N particles evolving at time t;
- 4 (4) $\rho_N^{\infty}(\boldsymbol{x})$ -the limiting density function of $\rho_N(\boldsymbol{x},t)$ as $t \to \infty$.

N

Figure: Different convergence

Energetic Variational
Lulu Kang
About Me
Energetic Variational
Inference
Motivation Variational Inference
Examples
KL-divergence

Conclusion

MMD

Lulu Kang

About Me

Energetic Variational Inference Motivation

Variational Inferen

Example

KL-divergence

Conclusion

Figure: The particles obtained by EVI-Im algorithm approximating three target distributions plotted as contours.

iterations = 10

iterations = 50

iterations = 1

KL-Divergence: Star-Shape Mixture Gaussian

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infer

KL-divergence

Conclusion

Figure: (a) Particles obtained by various methods [200 particles]: EVI-Im after 20 iterations, Blob method and matrix-valued SVGD both after 1000 iterations; (b) cross-entropy v.s. number of iterations of the three methods.

KL-Divergence: Gaussian Mixture Gaussian

Figure: Comparison of EVI-Im and the classic SVGD (Ir =1) at different iterations in Example 2.

KL-Divergence: Bayesian Logistic Regression

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infer

KL-divergence

Conclusion

Figure: Example 3. The test accuracy and log-likelihood of the training data (20 simulations) returned by EVI-Im, RSVGD, and SVGD methods.

KL-Divergence Bayesian Logistic Regression

Figure: The accuracy of 20 simulations for Bayesian logistic regression on Covertype dataset using different methods.

MMD: Toy Examples

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Inferen Examples KL-divergence

MMD

Figure: Low-discrepancy points for three target distributions.

MMD: Numerical Integration

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infer Examples

KL-divergend

Conclusion

Figure: The relative error of 20 repetitions, left is 2D case right is 5D case.

MMD: Generative Learning

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infere

Examples KL-divergence MMD

Conclusion

Figure: MNIST example: training samples (left) and generated samples from EVI-MMD (right).

Energetic Variational Inference	
Lulu Kang	
About Me	
Energetic Variational	
Inference	
Variational Inference	Conclusion
Examples	Conclusion
KL-divergence	
MMD	
Conclusion	

Collaborators and Students

Energetic Variational Inference

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infere

Examples KL-divergence MMD

Conclusion

This project is supported by NSF.

- Lulu Kang, PI.
- Chun Liu, Chair of Applied Mathematics, Co-PI.
- Yiwei Wang, Assistant Visiting Professor, Co-PI.
- Jiuhai Chen, graduated in Spring 2020 with M.S. in Applied Mathematics.
- Yindong Chen, current Ph.D. student.
- Yuanxing Cheng, current Ph.D. student.
- Kaylee Rosendahl, current 2nd year AMATH undergraduate student.

Seek collaborators

Energetic Variational Inference

Lulu Kang

About Me

- Energetic Variational Inference ^{Motivation} Variational Infere
- Examples KL-divergence MMD

Conclusion

We are seeking collaborators

- scientists and engineers who need statistical and machine learning solutions to advance their research, and who can provide us domain expertise and application background;
- mathematicians, statisticians, or machine learning experts who want to work on the methodological and theoretical sides.

Lulu Kang

About Me

Energetic Variational Inference Motivation Variational Infe

Examples KL-divergence MMD

Conclusion

Thank you!

Email: lkang2@iit.edu https://sites.google.com/iit.edu/lulukang/